
A Short Guide to FFASM
flashforth assembler

ffasm is a slightly extended and enhanced version of Mikael Nordman's asm2.txt for AVR
Atmega devices. See: https://github.com/oh2aun/flashforth/tree/master/avr/forth
It was written for use with Mikael Nordman's flashforth and been tested with other Forth
implementations.

ffasm allows assembler code to be used within Forth words using a syntax almost
identical to normal assembler rather then the reverse Polish notation of many other Forth
assemblers. It is also compact requiring less than 2K bytes of flash.

Not all AVR instructions are currently implemented, but it is relatively trivial to add
additional instructions provided they fit within the already defined rules. IMHO,
compactness trumps completeness for small memory systems.

WARNING: There is no error checking regarding whether a number or register is outside
the permitted range allowed for a particular instruction. ffasm masks parameters to the
number of bits required for the specified instruction, so incorrect parameters will still
compile. For example: The ldi instruction only works on registers R16-R31. The instruction
as: ldi r0 #9 will compile without error but the resulting code will be for: ldi r16 #9

Some trivial examples should illustrate how to use ffasm to create assembler words:

: ex1
 as: ldi r16 $ff \ Load r16 with $ff
 as: begin \ Start loop
 as: dec r16 \ Decrement r16
 as: until eq \ Leave loop when r16 equals zero [brne begin:]
; \ Return

All assembler instructions are prefixed by as:

The trailing semicolon results in a ret instruction.

The mnemonics for each instruction are the same as in the Atmel AVR Instruction Guide
but always in lower case. Parameters are separated by white space. Where an instruction
needs a register as a parameter they are referred to by r0 to r31.

Examples: add r1 r7 cpc r3 r9 cpse r24 r7

Instructions which access configuration registers, set/clear/test bits, address memory or
take immediate values can take literals, or consume a value from the stack.

Examples: subi r24 1 adiw r30 #10 sbi $25 3 lds r24 $300

To take a value from the stack use the ^ character.

Examples: ldi r16 ^ sbiw r24 ^

For instructions where two parameters are required and they are both going to be on the
stack then the usual reverse Polish order will apply.
Example: $25 constant PORTB \ Define register as constant

3 constant LED \ Define pin number as constant
: led_on \ Word to turn on pin 3 of PORTB
 [LED PORTB] \ Put the parameters on the stack
 as: sbi ^ ^ \ Set PORTB pin 3 to high.
;

It is essential to place the values on the stack within [and] immediately before the

https://github.com/oh2aun/flashforth/tree/master/avr/forth

instruction. This not only aids readability, it also ensures they do not interfere with the stack
values left by flow control structures (see later). If a word contains no flow control
structures it is possible to place them on the stack before starting the colon definition.

NOTE: A serial application, such as forthtalk that substitutes register names with literals
during the upload makes for more readable and compact code. The same example would
simply be: : led_on

 as: sbi PORTB LED
;

However, it can still be useful to use the stack when, for instance, you need to calculate a
register mask as in this code snippet for use with forthtalk:

 [SPE MSTR SPR0 or or]
 as: ldi r17 ^ \ Set SPE MSTR and SPR0 bits in r17
 as: out SPCR r17 \ Load them into the SPI Control Register

It is also, of course, possible to calculate a value as in this example of a 50uS delay taking
into account processor speed which is available in flashforth in the constant Fcy.

: 50uS
 [Fcy 1000 / \ Switch to interpreter to calculate cycles per 1uS
 50 * \ Calculate number of cycles to burn in 50uS
 3 /] \ Calculate delay loops reqd then switch back to compile
 as: ldi r16 ^ \ Load r16 with number of cycles from stack
 as: begin \ Each loop iteration takes 3 processor cycles
 as: dec r16 \ Decrement r16 – 1 cycle
 as: until eq \ brne instruction – 2 cycles
;

I/O instructions take the memory mapped value for registers. These are automatically
adjusted to direct I/O addresses. Specifically cbi, sbi, sbic and sbis require a register
reference in the range $20 - $3f and in and out require a register reference in the range
$20 - $5f.
Examples: sbi $25 3 (Set pin 3 of PORTB to high)

sbic $23 0 (Skip next instruction if pin 0 of PORTB is zero)
out $24 r24 (Set DDRB register with value in r24)
in r24 $23 (get the current value of all PORTB pins into r24)

Indirect addressing registers are referred to by: x y z
Indirect with post-increment is indicated by: x+ y+ z+ and pre-decrement by: -x -y -z
Examples: st -y r24 ld r16 x ld r24 x+ st -z r20
Load or store indirect with displacement instructions such as: ldd r24 y+q or std z+q r24
are not supported.

None of the standard brxx branch instructions are implemented. Branches are replaced
with the flow control structures:
ffasm assembler

if xx … then
if xx … else … then
begin … until xx
begin … while xx … repeat
begin … repeat

brxx then … then: …
brxx else … rjmp then else: … then:
begin: … brxx begin …
begin: … brxx exit … rjmp begin exit:
begin: … rjmp begin

which in combination calculate the appropriate brxx branches. The flow control words leave
values on the stack which are used to calculate the branches and jumps.

xx can be any of the usual AVR branch mnemonics:

cc Carry Cleared
cs Carry Set
eq Equal
ge Greater or Equal (Signed)
hc Half Carry Flag is Cleared
hs Half Carry Flag is Set
id Global Interrupt is Disabled
ie Global Interrupt is Enabled
lo Lower (Unsigned)

lt Less Than (Signed)
mi Branch if Minus
ne Branch if Not Equal
pl Branch if Plus
sh Same or Higher (Unsigned)
tc T Flag is Cleared
ts T Flag is Set
vc Overflow Cleared
vs Overflow Set

If begin is paired with repeat but you must provide an 'exit' unless deliberately creating
an infinite loop, e.g a ret within if and then as below:
: ex2
 as: ldi r16 $4 \ Load r16 with $4
 as: begin \ Start loop
 as: dec r16 \ Decrement r16
 as: if ne \ If not equal goto then [brne then:]
 as: clr r25 \ Clear r25
 as: ret \ Return – same as the Forth word 'exit'
 as: then
 as: lsl r24 \ Logical shift left r24
 as: repeat \ Loop back to begin [rjmp begin:]
;

Flow control can be nested but you should note that brxx branches can only reach +63 or
-64 words (~=instructions) from the current location. Keep your definitions relatively short!

In some circumstances it may be possible to use one of the sbrc, sbrs, sbic or sbis
instructions to skip over the repeat [rjmp]instruction:

: ex3
 as: ldi r16 $ef \ Load r16 with $ef = %11101111
 as: begin \ Start loop
 as: lsr r16 \ Logical shift right r16
 as: sbrc r16 0 \ Skip next instruction if Bit0 in r16 is cleared
 as: repeat \ Loop back to begin [rjmp begin:]
;

flashforth has quite a few words which are always inlined, i.e. their code is inserted
directly into a newly defined word rather than being accessed via a call to a subroutine.

These are: rp@ >< cell+ cells char+ chars invert 1+ 1- 2+ 2- 2* 2/ p+ @p p2+ ei
di dup drop rdrop >body idle busy

These words are listed on the flashforth page: http://www.flashforth.com/atmega.html

Inlined words can therefore be intermixed with assembler with no overhead.

: ex5 (n – n)
 dup \ Duplicate the top item on the stack
 di \ Disable interrupts
 as: ldi r16 #16 \ Load r16 with decimal 16
 as: begin \ Start loop
 as: lsr r25 \ Shift ToSH right through C
 as: ror r24 \ Rotate through C ToSL

http://www.flashforth.com/atmega.html

 as: if cs
 as: sbi 5 3 \ Set Port B pin 3 high if C set
 as: then
 as: if cc
 as: cbi 5 3 \ Set Port B pin 3 low if C clear
 as: then
 as: dec r16 \ Decrement r16
 as: until eq \ Leave loop when r16 equals zero [brne begin:]
 ei \ Enable interrupts
 drop \ Delete ToS
;

Some other flashforth words can be inlined by prefixing them with the Forth word inline
namely: ticks 1 over swap + - and or xor mset mclr lshift rshift sp@ sp! !p p++
flash eeprom ram cell false true state ticks >pr d+ d2/ dinvert fl- fl+

Of course any assembler words you define can also be marked to be automatically inlined
by using the Forth word inlined after the semicolon.

: ex6 (s8 – s16+1)
 as: sbrc r24 7 \ Sign extend an 8 bit value to 16 bits
 as: ldi r25 $ff
 as: adiw r24 $01 \ And increment
; inlined

